62 research outputs found

    Conditionally-averaged structures in wall-bounded turbulent flows

    Get PDF
    The quadrant-splitting and the wall-shear detection techniques were used to obtain ensemble-averaged wall layer structures. The two techniques give similar results for Q4 events, but the wall-shear method leads to smearing of Q2 events. Events were found to maintain their identity for very long times. The ensemble-averaged structures scale with outer variables. Turbulence producing events were associated with one dominant vortical structure rather than a pair of counter-rotating structures. An asymmetry-preserving averaging scheme was devised that allowed a picture of the average structure which more closely resembles the instantaneous one, to be obtained

    Numerical simulation of pulsating turbulent channel flow

    Get PDF
    Direct and large-eddy simulations of the Navier–Stokes equations are used to study the pulsating flow in a channel. The cases examined span a wide range of frequencies of the driving pressure gradient, and encompass different physical behaviors, from the quasi-Stokes flow observed at high frequencies, to a quasisteady behavior at the lowest ones. The validity of the dynamic Smagorinsky model to study this kind of unsteady flow is established by a posteriori comparison with direct simulations and experimental data. It is shown that the fluctuations generated in the near-wall region by the unsteady pressure gradient do not propagate beyond a certain distance l t from the wall, which can be estimated quite accurately by a simple eddyviscosity argument. No substantial departure from the Stokes regime at very high frequency (ω + as high as 0.1) is observed. The time-dependent characteristics of the flow are examined in detail, as well as the topology of the coherent structures

    A physical length-scale for LES of turbulent flow

    Get PDF

    Preface

    Get PDF

    On the large-eddy simulation of transitional wall-bounded flows

    Get PDF
    The structure of the subgrid scale fields in plane channel flow has been studied at various stages of the transition process to turbulence. The residual stress and subgrid scale dissipation calculated using velocity fields generated by direct numerical simulations of the Navier-Stokes equations are significantly different from their counterparts in turbulent flows. The subgrid scale dissipation changes sign over extended areas of the channel, indicating energy flow from the small scales to the large scales. This reversed energy cascade becomes less pronounced at the later stages of transition. Standard residual stress models of the Smagorinsky type are excessively dissipative. Rescaling the model constant improves the prediction of the total (integrated) subgrid scale dissipation, but not that of the local one. Despite the somewhat excessive dissipation of the rescaled Smagorinsky model, the results of a large eddy simulation of transition on a flat-plate boundary layer compare quite well with those of a direct simulation, and require only a small fraction of the computational effort. The inclusion of non-dissipative models, which could lead to further improvements, is proposed

    Large-eddy simulations of the flow on an aerofoil with leading-edge imperfections

    Get PDF
    We performed large-eddy simulations of the flow over an aerofoil to understand the effects of leading-edge roughness designed to mimic ice accretion. The roughness elements protrude outside the boundary layer, which, near the leading edge, is very thin; thus, the configuration does not represent a classical rough-wall boundary layer, but rather the flow over macroscopic obstacles. A grid convergence study is conducted and results are validated by comparison to numerical and experimental studies in the literature. The main effect of the obstacles is to accelerate transition to turbulence. Significant variations in structure generation are observed for different roughness shapes. The three-dimensionality of the irregularities has a strong impact on the flow: it creates alternating regions of high-speed (‘peaks’) and low-speed (‘valleys’) regions, a phenomenon termed ‘channelling’. The valley regions resemble a decelerating boundary layer: they exhibit considerable wake and higher levels of Reynolds stresses. The peak regions, on the other hand, are more similar to an accelerating one. Implications of the channelling phenomenon on turbulence modelling are discussed.VK acknowledges the financial support by Mitacs, Bombardier Aerospace and CARIC/CRIAQ. UP acknowledges the support from the Natural Science and Engineering Research Council of Canada (NSERC) under the Discovery Grant program, and the Canada Research Chair program. This research was enabled in part by computational support provided by Compute Ontario (computeontario.ca) and Southern Ontario Smart Computing Innovation Platform (SOSCIP) (www.soscip.org).Peer ReviewedPostprint (author's final draft

    On the Computation of Sound by Large-Eddy Simulations

    Get PDF
    The effect of the small scales on the source term in Lighthill's acoustic analogy is investigated, with the objective of determining the accuracy of large-eddy simulations when applied to studies of flow-generated sound. The distribution of the turbulent quadrupole is predicted accurately, if models that take into account the trace of the SGS stresses are used. Its spatial distribution is also correct, indicating that the low-wave-number (or frequency) part of the sound spectrum can be predicted well by LES. Filtering, however, removes the small-scale fluctuations that contribute significantly to the higher derivatives in space and time of Lighthill's stress tensor T(sub ij). The rms fluctuations of the filtered derivatives are substantially lower than those of the unfiltered quantities. The small scales, however, are not strongly correlated, and are not expected to contribute significantly to the far-field sound; separate modeling of the subgrid-scale density fluctuations might, however, be required in some configurations

    Numerical simulation of roughness effects on the flow past a circular cylinder

    Get PDF
    In the present work large eddy simulations of the flow past a rough cylinder are performed at a Reynolds number of Re = 4.2 × 105 and an equivalent sand-grain surface roughness height ks = 0.02D. In order to determine the effects of the surface roughness on the boundary layer transition and as a consequence on the wake topology, results are compared to those of the smooth cylinder. It is shown that surface roughness triggers the transition to turbulence in the boundary layer, thus leading to an early separation caused by the increased drag and momentum deficit. Thus, the drag coefficient increases up to CD 1.122 (if compared to the smooth cylinder it should be about CD 0.3 - 0.5). The wake topology also changes and resembles more the subcritical wake observed for the smooth cylinder at lower Reynolds numbers than the expected critical wake at this Reynolds number.Peer ReviewedPostprint (author's final draft

    Flow separation in airfoils with rough leading edges

    Get PDF
    In this study we consider the flow over airfoils with leading-edge roughness, designed to mimic the ice depositions that may occur on an aircraft in flight. The focus of this investigation is the effect of the angle of attack on the mean-flow three-dimensionality. In our previous work (Kumar et al., Journal of Turbulence, Vol. 22, No. 11, 2021, pp. 735–760), we found stationary spanwise inhomogeneities in the form of alternating regions of fast- and slow-moving fluid, which were termed “flow channels.” In the present study we investigate further this phenomenon. We observe the formation of hairpin vortices downstream of the roughness elements, which eventually merge; this causes the formation of wider channels that remain coherent and affect the trailingedge separation. With increasing angle of attack, the intensity of flow channeling can increase or decrease depending on the topology of the leading-edge roughness. Its effect on the trailing-edge separation remains, however, significant. The mean-separation line is highly distorted, and the separation length can vary by up to 30% of the chord length along the span.Vishal Kumar acknowledges the financial support by Mitacs, Bombardier Aerospace, and CARIC/CRIAQ. Ugo Piomelli acknowledges the support from the Natural Science and Engineering Research Council of Canada under the Discovery Grant program. This research was enabled in part by computational support provided by Compute Ontario (https://www.computeontario.ca) and Southern Ontario Smart Computing Innovation Platform (https://www.soscip.org).Peer ReviewedPostprint (author's final draft
    • 

    corecore